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ABSTRACT
Maximal clique enumeration on uncertain graphs is a fundamen-

tal problem in uncertain graph analysis. In this paper, we study a

problem of enumerating all maximal (𝑘, 𝜂)-cliques on an uncertain

graph G, where a vertex set 𝐻 of G is a maximal (𝑘, 𝜂)-clique if (1)
𝐻 (|𝐻 | ≥ 𝑘) is a clique with probability no less than 𝜂, and (2) 𝐻 is

a maximal vertex set satisfying (1). The state-of-the-art algorithms

for enumerating all maximal (𝑘, 𝜂)-cliques are based on a set enu-

meration technique which are often very costly. This is because

the set enumeration based techniques may explore all subsets of

a maximal (𝑘, 𝜂)-clique, thus resulting in many unnecessary com-

putations. To overcome this issue, we propose several novel and

efficient pivot-based algorithms to enumerate all maximal (𝑘, 𝜂)-
cliques based on a newly-developed pivot-based pruning principle.

Our pivot-based pruning principle is very general which can be

applied to speed up the enumeration of any maximal subgraph that

satisfies a hereditary property. Here the hereditary property means

that if a maximal subgraph 𝐻 satisfies a property P, any subgraph

of 𝐻 also meets P. To the best of our knowledge, our work is the

first to systematically explore the idea of pivot for maximal clique

enumeration on uncertain graphs. In addition, we also develop a

nontrivial size-constraint based pruning technique and a new graph

reduction technique to further improve the efficiency. Extensive

experiments on nine real-world graphs demonstrate the efficiency,

effectiveness, and scalability of the proposed algorithms.
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1 INTRODUCTION
Maximal clique enumeration is a fundamental problem in graph

analysis. It is not only closely related to many other graph analysis

problems such as maximal independent set [36, 53], graph coloring

[2, 56], andmaximal common induced subgraphs [28], but it also has

numerous applications including social network analysis [38, 57],

financial network analysis [5], and bioinformatics [23].

Many real-world networks, however, often contain uncertain

information. For example, in Protein-Protein Interaction (PPI) net-

works, each edge represents an interaction between proteins which

are collected by researchers through experiments with inferred

links [14, 15, 50]. In social networks [1, 29], the collected relation-

ships between individuals may be missed by automated sensors. In

knowledge graphs [10, 11], many types of knowledge are uncertain

in nature, where relation facts are usually associated with confi-

dence scores to represent the likelihood of the relation fact being

true. These real-world networks, in which each edge is associated

with a probability of existence, are referred to as uncertain graphs

[24, 25].

Recently, the problem of enumerating all maximal cliques on

uncertain graphs [33, 40, 42, 43] has been well studied due to a large

number of practical applications [19, 20, 33, 42, 45]. For example, as

indicated in [42], the maximal cliques on uncertain graphs can be

used to find overlapping multiple protein complexes [19], integrate

genome mapping data [20], and analyze email networks [45]. In

addition, three other specific applications include clustering quality

testing in PPI networks (also tested in [33] partially), community

detecting in uncertain knowledge graphs, and task-driven team

formation problem, which we evaluated in this paper.

Given an uncertain graph G and two parameters 𝑘 and 𝜂, a set𝐻

of vertices in G is called a maximal (𝑘, 𝜂)-clique if (1) 𝐻 (|𝐻 | ≥ 𝑘)

is a clique with probability no less than 𝜂, and (2) 𝐻 is a maximal

vertex set satisfying (1). In this paper, we focus on the problem of

enumerating all maximal (𝑘, 𝜂)-cliques in an uncertain graph G.
Similar to the classic maximal clique enumeration on deterministic

graphs [7], the maximal (𝑘, 𝜂)-clique enumeration is NP-hard as
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Figure 1: Running example (an uncertain G)

proved by Mukherjee et al. [43]. To solve this problem, Mukherjee

et al. proposed a recursive backtracking enumeration algorithm

based on a set enumeration technique. To boost the efficiency, Li et

al. [33] proposed an improved maximal (𝑘, 𝜂)-clique enumeration

algorithm based on a carefully-designed graph reduction technique.

Instead of enumerating maximal (𝑘, 𝜂)-cliques on the original un-

certain graph, their algorithm first prunes the vertices that are

definitely not contained in any maximal (𝑘, 𝜂)-clique, and then em-

ploys the same set enumeration based technique to find all maximal

(𝑘, 𝜂)-cliques on the reduced uncertain graph.

However, the state-of-the-art algorithm [33] is still based on the

classical set enumeration technique which often includes many

unnecessary computations (because the set enumeration technique

needs to explore all subsets of a given set). For example, consider

an uncertain graph G induced by the vertices {𝑣4, · · · , 𝑣8} in Fig. 1.

Assume that 𝑘 = 1 and 𝜂 = 0.5. When using the state-of-the-

art algorithm [33] to enumerate all maximal (𝑘, 𝜂)-cliques in G,
a total number of 30 non-maximal (𝑘, 𝜂)-cliques will be explored,
because the set enumeration technique needs to explore all subsets

of {𝑣4, · · · , 𝑣8}. However, in this example, there is only one maximal

(𝑘, 𝜂)-clique in G (i.e., {𝑣4, · · · , 𝑣8}), thus the set enumeration based

algorithm includes many unnecessary computations.

Note that the traditional maximal clique enumeration problem

can be efficiently solved by a classic Bron-Kerbosch (BK) algorithm

with a pivot technique [7, 17, 52]. The main idea of such a pivot-

based pruning technique is that every maximal clique either con-

tains a vertex 𝑣 ∈ 𝑉 or a non-neighbor of 𝑣 . Thus, in the maximal

clique enumeration procedure, if a vertex 𝑣 , called a pivot vertex, is

selected, then all its neighbors can be pruned in the current recur-

sion, thus significantly reducing search branches. Unfortunately,

we show that the idea of the previous pivot technique cannot be

extended to solve the maximal (𝑘, 𝜂)-clique enumeration problem.

This is because in each recursion, the neighbors of a pivot vertex

may form a (𝑘, 𝜂)-clique with the current clique, thus cannot be

skipped (details are given in Section 3). To overcome this problem,

we need to seek different ideas to design novel pivot techniques.

To achieve this goal, we first propose a novel and general pivot

technique which can be used to speed up the enumeration of max-

imal subgraphs that satisfy the hereditary property, where the

hereditary property means that if a maximal subgraph satisfies

a property P, all its subgraphs also satisfy P. For convenience,
we refer to a subgraph as the P-subgraph if it meets a hereditary

property P. Note that the idea of our general pivot technique is
completely different from that of the traditional pivot technique.

Specifically, the key idea of our general pivot technique is to iden-

tify a periphery set 𝑃 such that in each recursion, the current clique

𝑅 together with 𝑃 cannot contain any maximal P-subgraph. Since
𝑅 ∪ 𝑃 does not contain any solutions, the enumeration algorithm

can safely prune the vertices in 𝑃 . Based on the general pivot tech-

nique, we develop a novel technique, called M-pivot, to identify

the periphery set 𝑃 for enumerating all maximal (𝑘, 𝜂)-cliques, as
the maximal (𝑘, 𝜂)-clique satisfies the hereditary property. Subse-

quently, a nontrivial size-constraint based punning technique and

a new graph reduction technique are also investigated to further

improve the efficiency. To summarize, the main contributions of

this paper are as follows.

A general pivot principle. We develop a novel and general pivot

principle to efficiently enumerate all maximal P-subgraphs in a

graph. To justify the correctness, we prove sufficient and neces-

sary conditions of the pivot principle for enumerating all maximal

P-subgraphs. To the best of our knowledge, we are the first to

systematically develop pivot-based algorithms for enumerating all

maximal P-subgraphs. We believe that the proposed pivot princi-

ple could be of independent interests, which can be used for many

other maximal hereditary subgraph enumeration problems.

Novel pivot-based algorithms. Based on the general pivot princi-

ple, we develop a novel pivot technique, calledM-pivot, to speed up
the maximal (𝑘, 𝜂)-clique enumeration. We also devise aM-pivot
based maximal (𝑘, 𝜂)-clique enumeration algorithm which can sig-

nificantly reduce the unnecessary computations of the state-of-

the-art algorithm. More interestedly, we show that the M-pivot
technique can be progressively refined to enhance the pruning

performance during the enumeration procedure.

New optimization techniques. To further improve the efficiency,

we also develop a nontrivial size-constraint based pruning tech-

nique and a new graph reduction technique. Specifically, the size-

constraint based pruning technique is based on the general pivot

principle. That is, we construct a specific pivot-based pruningmethod

based on the size constraint of the (𝑘, 𝜂)-clique. The graph reduction
technique is based on a newly-proposed concept called (𝑇𝑜𝑝𝑘 , 𝜂)-
triangle (more details in Section 5.2). We show that any maximal

(𝑘, 𝜂)-clique must be contained in the (𝑇𝑜𝑝𝑘−2, 𝜂)-triangle of G.
The algorithm only needs to enumerate all maximal (𝑘, 𝜂)-cliques
in (𝑇𝑜𝑝𝑘−2, 𝜂)-triangle, instead of in the original uncertain graph

G, thus significantly improving the efficiency.

Extensive experiments. We conduct comprehensive experiments

using nine real-world graphs to evaluate the efficiency, effectiveness,

and scalability of the proposed algorithms. The results show that our

algorithms significantly outperform the state-of-the-art algorithm

on all datasets. Moreover, our best algorithm can be up to two orders

of magnitude faster than the state-of-the-art algorithm on large

datasets. For reproducibility purposes, the source code of this paper

is released at https://github.com/qq-dai/maximalUncertainClique.

2 PROBLEM STATEMENT
Let G = (𝑉 , 𝐸, 𝑝) be an uncertain graph, where𝑉 is a set of vertices,

𝐸 is a set of edges, and 𝑝 : 𝐸 → (0, 1] is a function that assigns each

edge 𝑒 ∈ 𝐸 a probability indicating the likelihood of 𝑒’s existence.

Let 𝑛 = |𝑉 | and𝑚 = |𝐸 | be the number of vertices and edges of G
respectively. Denote by 𝑁𝑣 (G) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸} a set of neighbors
of 𝑣 in G. The degree of 𝑣 , denoted by 𝑑𝑣 (G), is the cardinality of

𝑁𝑣 (G), i.e., 𝑑𝑣 (G) = |𝑁𝑣 (G)|. Following the standard uncertain

graph model [24, 33, 43], we assume that the existing probabilities
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of edges in G are independent. Based on this assumption, a widely-

used possible world model can be applied to analyze uncertain

graphs. Specifically, a possible world of G is a deterministic graph,

denoted by𝐺 = (𝑉 , 𝐸𝐺 ), which is obtained by sampling an edge set

𝐸𝐺 from 𝐸 w.r.t. (with respect to) the probability function 𝑝 . The

probability of a possible world 𝐺 , denoted by 𝑃𝑟 (𝐺), is defined as

𝑃𝑟 (𝐺) =
∏
𝑒∈𝐸𝐺

𝑝𝑒

∏
𝑒∈𝐸\𝐸𝐺

(1 − 𝑝𝑒 ). (1)

Clearly, the number of possible worlds of an uncertain graph G is

2
|𝐸 |

. Given a possible world 𝐺 , a clique 𝐻 is a completed subgraph

in 𝐺 . If there does not exist a clique 𝐻 ′ such that 𝐻 ⊂ 𝐻 ′, we say
that 𝐻 is maximal in 𝐺 . Below, we give the definition of clique

probability [33, 43].

Definition 1 (Clique probability). Given an uncertain graph G and
a set of vertices 𝐻 , the clique probability of 𝐻 , denoted by 𝑃𝑟 (𝐻,G),
is defined as the probability that in a sampled possible world of G, 𝐻
is a clique.

Assume that the probability of (𝑢, 𝑣) is 0 if (𝑢, 𝑣) ∉ 𝐸 and𝑢, 𝑣 ∈ 𝑉 .

As shown in [43], the clique probability of 𝐻 can be computed by

𝑃𝑟 (𝐻,G) =
∏

𝑒∈{ (𝑢,𝑣) |𝑢,𝑣∈𝐻,𝑢≠𝑣}
𝑝𝑒 . (2)

Based on Definition 1, a concept of 𝜂-clique on an uncertain

graph G can be defined as follows.

Definition 2 (𝜂-clique). Given an uncertain graph G and a prob-
ability threshold 𝜂 ∈ [0, 1], a set of vertices 𝐻 is an 𝜂-clique if
𝑃𝑟 (𝐻,G) ≥ 𝜂.

A vertex set 𝐻 is a maximal 𝜂-clique if (1) it is a 𝜂-clique, and

(2) there does not exist a vertex set 𝐻 ′ ⊃ 𝐻 such that 𝐻 ′ is an 𝜂-

clique. For a typical uncertain graph, there may exist many maximal

𝜂-cliques with small size which are often no practical use in real-

world applications [33, 43]. Thus, it is more useful to detect large

maximal 𝜂-cliques for real-world applications. Below, we give the

definition of (𝑘, 𝜂)-clique which is a maximal 𝜂-clique with at least

𝑘 vertices.

Definition 3 (Maximal (𝑘, 𝜂)-clique). Given an uncertain graph
G, a probability threshold 𝜂 ∈ [0, 1], and a positive integer 𝑘 ∈ N+.
A vertex set 𝐻 ⊆ 𝑉 is a maximal (𝑘, 𝜂)-clique if |𝐻 | ≥ 𝑘 and 𝐻 is a
maximal 𝜂-clique.

Problem definition. Given an uncertain graph G and two param-

eters 𝜂 ∈ [0, 1] and 𝑘 ∈ N+, our goal is to efficiently enumerate all

maximal (𝑘, 𝜂)-cliques in G.

3 DEFECTS OF EXISTING SOLUTIONS
To enumerate all maximal (𝑘, 𝜂)-cliques, Mukherjee et al. [43] pro-

posed a recursive backtracking algorithm based on a set enumera-

tion technique [48]. The main idea of this algorithm is to maintain

three disjoint sets 𝑅, 𝐶 , and 𝑋 in the recursive enumeration proce-

dure, where 𝑅 is an 𝜂-clique, 𝐶 is a set of candidates that are to be

added to 𝑅 to form a larger 𝜂-clique, and 𝑋 is a set of vertices that

have already been explored from 𝐶 . In each recursion, the three

vertex sets always keep the invariance that 𝑅 ∪ {𝑣} is an 𝜂-clique

if 𝑣 ∈ 𝐶 ∪ 𝑋 , and 𝑅 ∪ {𝑣} is not an 𝜂-clique if 𝑣 ∉ 𝐶 ∪ 𝑋 . The algo-
rithm iteratively processes the candidate vertices in 𝐶 following a

Algorithm 1: MUC(G, 𝑘, 𝜂) [43]
Input: An uncertain graph G, and two parameters 𝑘 and 𝜂.

Output: All maximal (𝑘, 𝜂 )-cliques in G.
1 foreach connected component𝐶 in G do
2 Replace each 𝑣 in𝐶 with (𝑣, 1) ;
3 MUCE(∅, 1,𝐶, ∅, 𝑘, 𝜂 ) ;

4 ProcedureMUCE(𝑅,𝑞,𝐶,𝑋, 𝑘, 𝜂 )
5 if 𝐶 ∪𝑋 = ∅ and |𝑅 | ≥ 𝑘 then
6 Output 𝑅 as a maximal (𝑘, 𝜂 )-clique;
7 foreach (𝑣, 𝑟 ) ∈ 𝐶 in lexicographical ordering over 𝑣 do
8 𝑅′ ← 𝑅 ∪ {𝑣}; 𝑞′ ← 𝑞 ∗ 𝑟 ;
9 𝐶′ ← GenerateSet(𝑣,𝐶,𝑞′, 𝜂 ) ;

10 𝑋 ′ ← GenerateSet(𝑣,𝑋,𝑞′, 𝜂 ) ;
11 if |𝑅′ | + |𝐶′ | ≥ 𝑘 then
12 MUCE(𝑅′, 𝑞′,𝐶′, 𝑋 ′, 𝑘, 𝜂 ) ;
13 𝐶 ← 𝐶 \ { (𝑣, 𝑟 ) }; 𝑋 ← 𝑋 ∪ { (𝑣, 𝑟 ) };
14 Procedure GenerateSet(𝑣,𝐶,𝑞, 𝜂 )
15 𝐶′ ← ∅;
16 foreach (𝑢, 𝑟 ) ∈ 𝐶 s.t. 𝑢 ∈ 𝑁𝑣 (G) do
17 𝑞′ ← 𝑞 ∗ 𝑟 ∗ 𝑝 (𝑢,𝑣) ;
18 if 𝑞′ ≥ 𝜂 then 𝐶′ ← 𝐶′ ∪ (𝑢, 𝑟 ∗ 𝑝 (𝑢,𝑣) ) ;
19 return𝐶′;

lexicographical ordering to expand the current 𝜂-clique 𝑅. Before

entering the next recursion, the sets 𝐶 and 𝑋 are updated to keep

the above-mentioned invariant constraint. Whenever 𝐶 ∪ 𝑋 = ∅
and |𝑅 | ≥ 𝑘 , the set 𝑅 is a valid (𝑘, 𝜂)-clique. The detailed procedure
is shown in Algorithm 1.

In Algorithm 1, it invokes the procedureMUCE to enumerate all

maximal (𝑘, 𝜂)-cliques for each connected component of G (lines 1-

3), whereMUCE admits six arguments: the 𝜂-clique 𝑅, the clique

probability𝑞 of𝑅, the candidate set𝐶 , the set𝑋 , and two parameters

𝑘 and 𝜂. Note that every element in 𝐶 and 𝑋 is a pair of (𝑣, 𝑟𝑣 )

which is initialized by (𝑣, 1) [43], where 𝑣 is a vertex satisfying that
𝑅 ∪ {𝑣} is a 𝜂-clique, and 𝑟𝑣 is the product of probabilities of the
edges connecting 𝑣 and the vertices in 𝑅. The algorithm iteratively

processes each vertex 𝑣 ∈ 𝐶 in a lexicographical ordering to expand

the current 𝜂-clique 𝑅. In each iteration, the algorithm updates the

sets 𝐶 and 𝑋 using procedure GenerateSet to keep the invariance

that𝑅′∪{𝑢} is an𝜂-cliquewhen𝑢 ∈ 𝐶′∪𝑋 ′ (lines 8-10). If theremay

be a (𝑘, 𝜂)-clique containing 𝑅′, i.e., |𝑅′ | + |𝐶′ | ≥ 𝑘 , the algorithm

continues the recursive calls (lines 11-12). After processing the

vertex 𝑣 , the algorithm removes 𝑣 from𝐶 and adds it into𝑋 (line 13).

The algorithm terminates until all vertices in 𝐶 are processed.

An improved solution to enumerate all maximal (𝑘, 𝜂)-cliques
was developed by Li et al. [33]. Their algorithm first applies several

effective pruning techniques to remove vertices that are definitely

not included in any maximal (𝑘, 𝜂)-clique, and then makes use of

the same recursive backtracking technique as used in Algorithm 1

on the reduced graph to find all maximal (𝑘, 𝜂)-cliques. Since the
algorithm proposed by Li et al. [33] works on the reduced graph

which is often much smaller than the original uncertain graph, it is

much faster than the algorithm proposed by Mukherjee et al. [43].

To enumerate a maximal (𝑘, 𝜂)-clique 𝐻 , these algorithms need

to explore all the non-maximal (𝑘, 𝜂)-cliques contained in 𝐻 based
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on the set enumeration technique (because the set enumeration

technique needs to explore all subsets of a given set [48]), resulting

in poor performance. For example, consider an uncertain graph

G induced by the vertex set {𝑣4, · · · , 𝑣8} in Fig. 1. Assume that

𝑘 = 1 and 𝜂 = 0.5. When using the algorithm proposed in [33] to

enumerate all maximal (𝑘, 𝜂)-cliques in G, a total number of 31

(𝑘, 𝜂)-cliques (all vertex subsets of {𝑣4, · · · , 𝑣8}) are explored by

this algorithm). However, there is only one maximal (𝑘, 𝜂)-clique
in G. Thus, many unnecessary computations exist in this algorithm.

In the following, we show that it is very challenging to reduce

unnecessary computations by using existing techniques.

A failed attempt. Recall that on deterministic graphs, there exist

many efficient algorithms to enumerate all maximal cliques based

on the classic BK algorithm with pivot techniques [7, 8, 52]. Specif-

ically, the key idea of these algorithms is that every maximal clique

of a deterministic graph either contains a vertex 𝑣 ∈ 𝑉 or a non-

neighbor of 𝑣 (i.e., the set containing only the neighbors of 𝑣 must

not be a maximal clique, because 𝑣 can be added into it to form a

larger one). Thus, in enumerating maximal cliques, if a vertex 𝑣 in

𝐶 or 𝑋 , called a pivot vertex, is selected, then all neighbors of 𝑣 ∈ 𝐶
can be skipped to expand the current clique 𝑅, thus significantly

reducing the number of recursive calls. Unfortunately, such a pivot

technique is failed to enumerate all maximal (𝑘, 𝜂)-cliques; and the

detailed reasons are as follows.

Based on existing pivot techniques, all neighbors of a pivot ver-

tex 𝑣 in the candidate set 𝐶 will be skipped to expand 𝑅. However,

for uncertain graphs, such neighbors may form a maximal 𝜂-clique

with the current clique 𝑅 (some subsets of a maximal clique may be

maximal 𝜂-cliques of G). Therefore, some results can be missed by

existing pivot techniques to enumerate all maximal (𝑘, 𝜂)-cliques,
which indicates that existing pivot techniques no longer hold for

maximal (𝑘, 𝜂)-clique enumeration. For example, reconsider the

uncertain graph in Fig. 1. Suppose that 𝜂 = 0.65. Then, the set

{𝑣4, 𝑣5, 𝑣6, 𝑣7} is a maximal 𝜂-clique in G, but it is not a maximal

clique in the corresponding deterministic graph. In the clique enu-

meration procedure, if we choose 𝑣8 as a pivot vertex at the top

recursion, then the vertices {𝑣4, 𝑣5, 𝑣6, 𝑣7} will be skipped to expand
𝑅. Thus, only the cliques containing 𝑅 ∪ {𝑣8} may be found, while

the maximal 𝜂-clique {𝑣4, 𝑣5, 𝑣6, 𝑣7} is missed.

Moreover, even if the probabilities of edges are taken into consid-

eration, existing pivot techniques still do not work. The idea is that

we first select a pivot vertex 𝑣 from 𝐶 , and then skip the neighbor

set𝐶′ ⊆ 𝐶 of 𝑣 to expand 𝑅 such that for each𝑢 ∈ 𝐶′, 𝑅∪{𝑣,𝑢} is an
𝜂-clique. Note that 𝐶′ can be computed by procedure GenerateSet.
It seems that all maximal 𝜂-cliques that contain the neighbors of 𝑣

can be obtained by expanding 𝑣 to 𝑅. But unfortunately, such a re-

sult is incorrect. Suppose that (1) we have three 𝜂-cliques 𝑅∪{𝑣,𝑢1},
𝑅 ∪ {𝑣,𝑢2}, and 𝑅 ∪ {𝑢1, 𝑢2} in G; and (2) 𝑅 ∪ {𝑣,𝑢1, 𝑢2} is not a
𝜂-clique, because its clique probability is smaller than the threshold

𝜂. Note that such an assumption can be easily satisfied in many

uncertain graphs. Clearly, in this case, the 𝜂-clique 𝑅 ∪ {𝑢1, 𝑢2} will
be missed when choosing 𝑣 as a pivot vertex.

Is there a pivot technique that can be applied to enumerate

all maximal (𝑘, 𝜂)-cliques on uncertain graphs? We answer this

question affirmatively based on a novel result that we found, which

will be introduced in the following section.

4 NEW ENUMERATION TECHNIQUES
In this section, we first develop a novel and general pivot principle
for the problem of enumerating all maximal subgraphs that satisfy

the hereditary property. Then, based on the general pivot principle

and the observation that the maximal (𝑘, 𝜂)-clique satisfies the

hereditary property, we propose two new pivot techniques for

enumerating all maximal (𝑘, 𝜂)-cliques. Below, we first introduce
the general pivot principle for enumerating all maximal hereditary

subgraphs, and then present pivot techniques for the problem of

enumerating all maximal (𝑘, 𝜂)-cliques.

4.1 A New and General Pivot Principle
Here we develop a general pivot principle for the problem of maxi-

mal P-subgraph enumeration, where P denotes a hereditary prop-

erty. Given a graph 𝐺 , a subgraph 𝑆 of 𝐺 is a maximal P-subgraph
if (1) any subgraph of 𝑆 satisfies P (hereditary property) and (2)

there is no other vertex 𝑣 in 𝐺 such that 𝑆 ∪ {𝑣} satisfies P (max-

imal property). Note that we can make use of the classic back-

tracking set enumeration technique, denoted by Recursion(𝑅,𝐶,𝑋 ),
to enumerate all maximal P-subgraphs. Similar to Algorithm 1,

Recursion(𝑅,𝐶,𝑋 ) admits three input parameters𝑅,𝐶 and𝑋 , where

𝑅 is a P-subgraph, 𝐶 is the candidate set satisfying that 𝑅 ∪ {𝑣} is
a P-subgraph for each 𝑣 ∈ 𝐶 , and 𝑋 is the set of vertices already

processed in 𝐶 .

To reduce the unnecessary recursive calls of Recursion(𝑅,𝐶,𝑋 ),
one may conjecture whether we can skip some vertices in 𝐶 to

expand 𝑅 without losing any P-subgraph of 𝐺 . If the conjecture

is true, the pivot technique is accordingly applicable for the set

enumeration algorithm. Next, we first perform some theoretical

analysis for this conjecture, and then we show that there indeed

exists a novel pivot principle that makes this conjecture true. With-

out loss of generally, we define a subset of vertices in candidate set

𝐶 that can be ignored to expand 𝑅 as a periphery set.

Definition 4 (Periphery set). Given a graph 𝐺 , a set 𝑃 ⊆ 𝐶 of
vertices is the periphery set for a recursive call Recursion(𝑅,𝐶,𝑋 ) if
such a recursive call only needs to expand 𝑅 from 𝐶 \ 𝑃 .

To verify the conjecture, it is sufficient to show whether all

maximal P-subgraphs of 𝐺 containing 𝑅 can be enumerated by

Recursion(𝑅,𝐶,𝑋 ) with the periphery set 𝑃 . Note that, in this paper,
we only consider the nontrivial case in which 𝑃 is not empty. Below,

we give a necessary condition for the periphery set 𝑃 that must

satisfy. All proofs of this paper are omitted due to the space limit.

Lemma 1 (Necessary condition). For any recursive call Recur-
sion(𝑅,𝐶,𝑋 ), given a periphery set 𝑃 ⊆ 𝐶 , any maximal P-subgraph
𝑆 of𝐺 that contains 𝑅 cannot be included in the subgraph of𝐺 induced
by 𝑅 ∪ 𝑃 , i.e., given any maximal P-subgraph 𝑆 ⊃ 𝑅 in𝐺 , 𝑆 ⊈ 𝑅 ∪ 𝑃
if 𝑃 ⊆ 𝐶 is a periphery set in Recursion(𝑅,𝐶,𝑋 ).

Following Lemma 1, a remaining question is that if we obtain

a subset 𝑃 of 𝐶 such that 𝑅 ∪ 𝑃 does not contain any maximal P-
subgraph of 𝐺 in each recursive call, then whether all maximal P-
cliques of𝐺 can be enumerated based on such a periphery set 𝑃?We

have the following result which answers this question affirmatively.

Lemma 2 (Sufficient condition). Given a graph 𝐺 , all maximal P-
subgraphs of 𝐺 can be enumerated by the set enumeration algorithm
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Algorithm 2: PivotEnum(𝐺)
Input: A graph𝐺 .

Output: All maximal P-subgraphs of𝐺 .

1 PivotRecursion(∅,𝑉 , ∅) ;
2 Procedure PivotRecursion(𝑅,𝐶,𝑋 )
3 if 𝐶 ∪𝑋 = ∅ then Output 𝑅 as a maximal P-subgraph;
4 Detect a periphery set 𝑃 in𝐶 such that 𝑅 ∪ 𝑃 does not contain any

maximal P-subgraph of𝐺 that contains 𝑅;

5 foreach 𝑣 ∈ 𝐶 \ 𝑃 do
6 Generate𝐶′ ⊂ 𝐶 and 𝑋 ′ ⊆ 𝑋 such that 𝑅 ∪ {𝑣,𝑢} is a

P-subgraph for each 𝑢 in𝐶′ ∪𝑋 ′;
7 PivotRecursion(𝑅 ∪ {𝑣},𝐶′, 𝑋 ′ ) ;
8 Move 𝑣 from𝐶 to 𝑋 ;

with a periphery set 𝑃 such that 𝑅 ∪ 𝑃 does not contain any maximal
P-subgraph of 𝐺 that contains 𝑅 in each recursive call.

Based on this, a general pivot-based framework for enumerating

all maximal P-subgraphs is proposed in Algorithm 2. Note that the

key point of Algorithm 2 is to find a periphery set in each recursive

call (line 4). In the following, we will show how to identify an

effective periphery set for maximal (𝑘, 𝜂)-clique enumeration.

4.2 The M-pivot Technique
In this subsection, we develop specific pivot techniques for enu-

merating all maximal (𝑘, 𝜂)-cliques on uncertain graphs based on

the general pivot principle developed in Section 4.1. It is easy to

verify that all 𝜂-cliques in G meet the hereditary property, i.e., for

an 𝜂-clique 𝑅 of G, any subgraph of 𝑅 is also an 𝜂-clique. Therefore,

by the analysis in Section 4.1, we can reduce the number of recur-

sive calls of MUCE in enumerating maximal (𝑘, 𝜂)-cliques using
the pivot technique. The remaining issue is how to determine the

periphery set 𝑃 of 𝐶 such that 𝑅 ∪ 𝑃 cannot contain any maximal

(𝑘, 𝜂)-clique in each recursion Recursion(𝑅,𝐶,𝑋 ). Below, we first
develop a simple but efficient method, called M-pivot, to construct

such a periphery set. The main idea of M-pivot is that if we can
detect a maximum 𝜂-clique that contains a subset 𝑅 in a recur-

sive call Recursion(𝑅,𝐶,𝑋 ), we can safely prune the vertices in the

candidate set 𝐶 that are also included in the detected maximum

𝜂-clique. Formally, we have the following result.

Lemma 3. Given an uncertain graph G, all maximal (𝑘, 𝜂)-cliques
of G can be enumerated with the periphery set 𝑃 ⊆ 𝐶 if 𝑅 ∪ {𝑝𝑣} ∪ 𝑃
is a maximum 𝜂-clique in 𝑅∪𝐶 that contains 𝑅∪ {𝑝𝑣}, where 𝑝𝑣 ∈ 𝐶
is referred to as a pivot vertex.

Lemma 3 indicates that we can find a periphery set by detecting

a maximum 𝜂-clique in each recursive call. Clearly, by Lemma 3,

the size of the periphery set is dominated by the maximum 𝜂-clique

containing 𝑅 ∪ {𝑝𝑣}, where 𝑝𝑣 is the pivot vertex selected from the

candidate set𝐶 . Thus, in practice, it is better to select a pivot vertex

𝑝𝑣 from 𝐶 to make the maximum 𝜂-clique containing 𝑅 ∪ {𝑝𝑣} as
large as possible (some heuristic pivot selection strategies will be

discussed in Section 4.6). An example of the enumeration tree with

theM-pivot technique is shown in Fig. 2, and a brief explanation

of this example is given as follows.

� { 4}

� {� � � � � } = Ø

� Ø � { 1 2 3 5 6 7 8} � Ø

� {�2}
……

……

� {� �5}
� {�6 �7 �8} � Ø

� {� �5 �6}
� {�7 �8} � Ø

� {� �5 �6 �8}
� Ø � Ø

� {� �5 �8}
� {�7} � {�6}

� {� �5 �8 �7}
� Ø � Ø

� {� �3}
� {�8} � Ø

� {� �3 �8}
� Ø � Ø

� {� �8}
� �6 �7 � {�5 �3}

� {� �8 �6 �7}
� Ø � Ø

� {� �8 �6}
� {�7 } � {�5}

� {�8}
� {�5 �6 �7}

� {� �1 �2 �3}

� {�1}
……

� {�3}
……

� {� �5 �6 �7}
� Ø � Ø

Figure 2: An enumeration tree of G in Fig. 1 with theM-pivot
technique by setting 𝑘 = 1 and 𝜂 = 0.65 (the red vertices in
each𝐶 form the periphery set; here we omit the probabilities
associated with vertices in 𝐶 and 𝑋 ).

Example 1. Given an uncertain graph G in Fig. 1, assume that
𝑘 = 1 and 𝜂 = 0.65. The initial parameters of MUCE are 𝑅 = ∅,
𝐶 = 𝑉 , and 𝑋 = ∅ respectively. Assume that the pivot vertex of
MUCE(𝑅,𝐶,𝑋 ) is 𝑣4. Then, the periphery set 𝑃 can be {𝑣5, 𝑣6, 𝑣7}, as
{𝑣4, 𝑣5, 𝑣6, 𝑣7} is a maximum (𝑘, 𝜂)-clique. By theM-pivot technique,
only vertices in 𝐶 \ 𝑃 are used to expand the current 𝜂-clique 𝑅.
When 𝑅 is expanded with the vertex 𝑣4, the candidate set is updated
to 𝐶1 = {(𝑣3, 0.9), (𝑣5, 0.9), (𝑣6, 1), (𝑣7, 1), (𝑣8, 0.9)} which will be
computed in the next recursive call. Furthermore, a new pivot vertex
in 𝐶1 can also be selected in the second recursion. Suppose that the
selected pivot vertex is 𝑣5. Then, the periphery set 𝑃1 can be {𝑣6, 𝑣7}.
Thus, the algorithm only picks the vertices in𝐶1 \𝑃1 to expand 𝑅. The
procedure continues until all vertices in 𝐶 of the top recursion have
been processed. The enumeration tree is shown in Fig. 2.

To implement the M-pivot technique, a remaining question is

how do we obtain the maximum 𝜂-clique that contains 𝑅 ∪ {𝑝𝑣}
in advance? Obviously, the traditional set enumeration algorithms

cannot meet such a requirement. To overcome this issue, we first in-

troduce a key observation that for any selected pivot vertex 𝑝𝑣 ∈ 𝐶 ,
the algorithm always needs to enumerate all maximal (𝑘, 𝜂)-cliques
containing 𝑝𝑣 . Therefore, a simple approach to find the maximum

𝜂-clique containing 𝑅 ∪ {𝑝𝑣} is that the algorithm first expands the

pivot vertex 𝑝𝑣 to 𝑅 and enumerates all maximal (𝑘, 𝜂)-cliques con-
taining 𝑅∪ {𝑝𝑣}; and then the algorithm picks the largest one. Note

that there may be multiple maximum 𝜂-cliques containing 𝑅∪ {𝑝𝑣}.
In our algorithm, we choose the first found maximum 𝜂-clique.

After completing the recursive call Recursion(𝑅 ∪ {𝑝𝑣},𝐶′, 𝑋 ′), a
maximum 𝜂-clique𝑄 can be found; and the algorithm backtracks to

the recursive call Recursion(𝑅,𝐶,𝑋 ). Then,𝑄 ∩𝐶 can be severed as

a periphery set to prune the candidate set 𝐶 in Recursion(𝑅,𝐶,𝑋 ).
4.3 An Improved M-pivot Technique
Recall that in the M-pivot method, the periphery set 𝑃 is mainly

determined by the set 𝑅 ∪ {𝑝𝑣}, where 𝑝𝑣 is the selected pivot ver-

tex from a candidate set 𝐶 . Typically, it is not easy to generate a

periphery set with the maximum size for a candidate set𝐶 (a larger

periphery set can prune more vertices in 𝐶). Here we develop an

improvedM-pivot technique that can progressively refine the pe-

riphery set. The key idea of this technique is that the algorithm first

invokes the M-pivot technique to obtain a periphery set 𝑃 . Then,

it recursively processes the vertices in 𝐶 \ 𝑃 . In each recursion,

if the algorithm finds a maximum 𝜂-clique with size larger than

|𝑅 | + |𝑃 | + 1 (here the maximum 𝜂-clique is taken over all maximal
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𝜂-cliques found in that recursion), the algorithm replaces the pe-

riphery set obtained previously with a larger maximum 𝜂-clique,

thus improving the pruning performance.

Lemma 4. For each recursive call, a periphery set 𝑃 can be replaced
with a set 𝑃 ′ ⊂ 𝐶 if |𝑃 ′ | > |𝑃 | and 𝑃 ′ ∪ 𝑅 ∪ {𝑣} is a maximum
𝜂-clique found in the previous recursive call, where 𝑅 is the 𝜂-clique,
𝐶 is the candidate set, and 𝑣 ∈ 𝐶 \ 𝑃 .

Note that such an improved M-pivot technique can be imple-

mented by slightly modifying the basic M-pivot method developed

in Section 4.2. Specifically, in each recursive call, the algorithm first

selects a pivot vertex 𝑝𝑣 ∈ 𝐶 to generate a periphery set 𝑃 based

on Lemma 3. Then, for each 𝑣 ∈ 𝐶 \ 𝑃 , the algorithm computes

all maximal (𝑘, 𝜂)-cliques containing 𝑅 ∪ {𝑣}, and records the de-

tected maximum 𝜂-clique so far. If there is a maximum 𝜂-clique

𝑃 ′ ∪ 𝑅 ∪ {𝑢} such that |𝑃 ′ | ≥ |𝑃 |, the algorithm replaces 𝑃 with 𝑃 ′

and continues to expand 𝑅 with vertices in 𝐶 \ 𝑃 ′. The following
example illustrates the idea of the improved M-pivot technique.

Example 2. Given an uncertain graph G shown in Fig. 1, let 𝑅 =

∅, 𝐶 = 𝑉 , and 𝑋 = ∅ be the initial parameters of the recursive
algorithm. Assume that 𝑘 = 1 and 𝜂 = 0.53 < 0.96. The algorithm
first selects a pivot vertex 𝑝𝑣 (suppose 𝑝𝑣 = 𝑣1) in 𝐶 to enumerate
all maximal (𝑘, 𝜂)-cliques containing 𝑝𝑣 . Then, the algorithm can
obtain a periphery set 𝑃 = {𝑣2, 𝑣3, 𝑣8}, since {𝑣1, 𝑣2, 𝑣3, 𝑣8} is the
maximum (𝑘, 𝜂)-clique containing 𝑣1 in the subgraph induced by
𝑅 ∪𝐶 . Clearly, the algorithm only needs to expand 𝑅 with vertices in
𝐶 \ 𝑃 . For a vertex 𝑣4 ∈ 𝐶 \ 𝑃 , all maximal (𝑘, 𝜂)-cliques containing
𝑣4 need to be computed, and the algorithm can obtain a maximum
(𝑘, 𝜂)-clique {𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8}. Based on Lemma 4, the periphery set
𝑃 can be updated to {𝑣5, 𝑣6, 𝑣7, 𝑣8}. As a result, only vertices {𝑣2, 𝑣3}
are left to expand 𝑅 in the top recursion. This example illustrates that
the improved M-pivot technique can significantly boost the pruning
performance over the basic M-pivot method.

4.4 The Pivot-based Enumeration Algorithm
Note that the traditional enumeration algorithms cannot be directly

used with our pivot techniques, because our pivot techniques need

to obtain a maximum 𝜂-clique in each recursion. In this subsection,

we develop a pivot-based enumeration algorithm which fully inte-

grates the proposed pivot techniques. The detailed implementation

of our algorithm is shown in Algorithm 3.

In Algorithm 3, it first sorts all vertices in 𝑉 based on some

ordering methods (line 1). Note that different ordering methods may

affect the performance of the algorithm which will be discussed

in Section 4.5. Let {𝑣1, · · · , 𝑣𝑛} be the ordering of vertices in 𝑉 .

Then, following the ordering, the algorithm processes vertices in

the top recursion to enumerate maximal (𝑘, 𝜂)-cliques by invoking

the PMUCE procedure (lines 2-5). PMUCE admits 7 arguments:

𝑅, 𝑟, 𝑋,𝐶, 𝑃, 𝑘 , and 𝜂, where the parameter 𝑃 is used to maintain

the maximum 𝜂-clique containing 𝑅 after the recursive call. The

algorithm initializes the set of candidate vertices𝐶 as the neighbors

of 𝑣𝑖 which come after 𝑣𝑖 , and the set 𝑋 of vertices as the remaining

neighbor vertices of 𝑣𝑖 (lines 3-4), where 𝑣𝑖 is the 𝑖-th vertex in the

ordered set𝑉 . Note that each vertex 𝑢 in𝐶 and 𝑋 is associated with

a probability that is the product of probabilities of edges connecting

to the vertex𝑢 and vertices in𝑅. In each recursive call, the algorithm

Algorithm 3: PMUC(G, 𝑘, 𝜂)
Input: An uncertain graph G and the parameters 𝑘 and 𝜂.

Output: All maximal (𝑘, 𝜂 )-cliques in G.
1 Sorts the vertices in𝑉 which are denoted by {𝑣1, · · · , 𝑣𝑛 };
2 for 𝑖 = 1 to 𝑛 do
3 𝐶 ← {(𝑣𝑗 , 𝑝 (𝑣𝑖 ,𝑣𝑗 ) ) |𝑣𝑗 ∈ 𝑁𝑣𝑖 (G), 𝑝 (𝑣𝑖 ,𝑣𝑗 ) ≥ 𝜂, 𝑗 > 𝑖 };
4 𝑋 ← {(𝑣𝑗 , 𝑝 (𝑣𝑖 ,𝑣𝑗 ) ) |𝑣𝑗 ∈ 𝑁𝑣𝑖 (G), 𝑝 (𝑣𝑖 ,𝑣𝑗 ) ≥ 𝜂, 𝑗 < 𝑖 };
5 PMUCE({𝑣𝑖 }, 1,𝐶,𝑋, {𝑣𝑖 }, 𝑘, 𝜂 ) ;
6 Procedure: PMUCE(𝑅,𝑞,𝐶,𝑋, 𝑃, 𝑘, 𝜂 )
7 if 𝐶 ∪𝑋 = ∅ and |𝑅 | ≥ 𝑘 then
8 Output 𝑅 as an maximal (𝑘, 𝜂 )-clique;
9 return 𝑃 ;

10 𝑄 ← ∅;
11 Select a pivot (𝑢, 𝑟 ) in𝐶 ;
12 do
13 𝑅′ ← 𝑅 ∪ {𝑢}; 𝑃 ′ ← 𝑅′;

14 Generate 𝑋 ′ and𝐶′ using procedure GenerateSet;
15 if |𝑅′ | + |𝐶′ | ≥ 𝑘 then
16 𝑃 ′ ← PMUCE(𝑅′, 𝑞 ∗ 𝑟,𝐶′, 𝑋 ′, 𝑃 ′, 𝑘, 𝜂 ) ;
17 if |𝑄 | < |𝑃 ′ | then𝑄 ← 𝑃 ′;

18 if |𝑃 | < |𝑃 ′ | then 𝑃 ← 𝑃 ′;

19 𝐶 ← 𝐶 \ { (𝑢, 𝑟 ) }; 𝑋 ← 𝑋 ∪ { (𝑢, 𝑟 ) };
20 while ∃(𝑢, 𝑟 ) ∈ 𝐶 s.t. 𝑢 ∉ 𝑄 ;

21 return 𝑃 ;

first checks whether𝐶 ∪𝑋 is empty and the size of 𝑅 is no less than

𝑘 ; and if these conditions hold, the algorithm outputs the set 𝑅 as

a maximal (𝑘, 𝜂)-clique of G (lines 7-9). Otherwise, the algorithm

continues to enumerate all (𝑘, 𝜂)-cliques containing 𝑅 (lines 10-21).

In particular, the algorithm first initializes a variable 𝑄 (line 10)

which is used to store the periphery set in the current recursive call.

Then, the algorithm selects a pivot vertex𝑢 from𝐶 (line 11). It starts

to expand 𝑅 with𝑢 and sets the larger 𝜂-clique to 𝑃 ′ (line 13). Before
entering the next recursive call, the algorithm invokes GenerateSet
to generate sets 𝐶′ and 𝑋 ′ (line 14). If there may be (𝑘, 𝜂)-cliques
containing 𝑅′, i.e., |𝑅′ | + |𝐶′ | ≥ 𝑘 , the algorithm continues the re-

cursive calls (lines 15-16) and returns the maximum (𝑘, 𝜂)-clique 𝑃 ′
that contains 𝑅′. If the size of the current periphery set𝑄 is smaller

than |𝑃 ′ |, the algorithm revises the periphery set 𝑄 by 𝑃 ′ based
on Lemma 4 (line 17). Also, the set 𝑃 needs to be replaced by 𝑃 ′ if
|𝑃 | < |𝑃 ′ | (line 18). This is because 𝑃 ′ is the maximum (𝑘, 𝜂)-clique
containing 𝑅 found so far. Subsequently, the algorithm removes 𝑢

from 𝐶 and adds it into 𝑋 (line 19). The recursion terminates until

all vertices in 𝐶 \𝑄 have been processed (line 20).

Theorem 4.1. Algorithm 3 correctly computes all maximal (𝑘, 𝜂)-
cliques of G.
Complexity analysis. In the worst case, there are at most 2

𝑛

branches in Algorithm 3. Thus, the time complexity of Algorithm 3

is 𝑂 (𝑛2𝑛) since each branch takes at most 𝑂 (𝑛) operations. How-
ever, with the graph reduction techniques developed in Section 5.2,

the time complexity of our algorithm can be further reduced to

𝑂 (𝑛′2𝑛′ ), where 𝑛′ is the number of vertices in the (𝑇𝑜𝑝𝑘 , 𝜂)-
triangle of G (detailed definition is given in Section 5.2). Since our

graph reduction technique is more powerful than the state-of-the-

art technique (see Lemma 10), the proposed algorithm is often much
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faster than the state-of-the-art algorithm [33]. Moreover, with our

pivot-based pruning techniques, the practical performance of our

algorithm can be more efficient, which is further demonstrated in

our experiments. Since our algorithm works in a Deep First Search

(DFS) manner, the total space overhead of our algorithm is linear

to the graph size (i.e., 𝑂 (𝑚 + 𝑛)).
Discussions. The pivot algorithms proposed in this paper are quite

different from the classic pivot-based BK algorithms [7, 8, 52]. The

main differences are twofold. First, the pivot techniques are dif-

ferent. In Section 3, we have analyzed that the pivot technique in

classic BK algorithms cannot solve the problem of enumerating

maximal cliques on uncertain graphs, and it is unclear whether

there exists a pivot technique to solve this problem before our work.

In this paper, we first discover a novel pivot technique for enumer-

ating all maximal (𝑘, 𝜂)-cliques based on a general pivot principle

developed in Section 4.1. More specifically, such a pivot technique

corresponds to skipping candidate vertices that are also included in

a maximum (𝑘, 𝜂)-clique containing the pivot vertex in each recur-

sion. In addition, we observe that the proposed pivot technique can

be progressively refined to further improve efficiency. Second, the

DFS enumeration trees are also different. The key step of each clique

enumeration algorithm is to determine the periphery set in each

recursion. It can be seen that the periphery set can be immediately

determined when the pivot vertex is obtained in classic pivot-based

BK algorithms, which is just a subset of the candidate set that is

adjacent to the pivot vertex. However, in our pivot algorithms, such

a periphery set cannot be generated in a similar manner. This is be-

cause a maximum (𝑘, 𝜂)-clique containing the pivot vertex can not

be obtained in advance. To circumvent this issue, we first enumerate

all maximal (𝑘, 𝜂)-cliques containing the pivot vertex and use an

additional argument 𝑃 to store the maximum 𝜂-clique detected so

far. When obtaining all maximal (𝑘, 𝜂)-cliques containing the pivot
vertex, the set 𝑃 can be used as a periphery set.

4.5 Ordering Heuristics
Recall that the performance of Algorithm 3 may be related to the or-

dering of the vertices (see line 1 of Algorithm 3). Here we introduce

two orderings to speed up the maximal (𝑘, 𝜂)-clique enumeration.

Degeneracy ordering. A simple and efficient ordering is the de-

generacy ordering [16] which is widely used in traditional maximal

clique enumeration algorithms on deterministic graphs. Such an or-

dering can be obtained by repeatedly peeling a vertex of minimum

degree in the remaining subgraph (the vertex removing ordering

is just the degeneracy ordering). Such a peeling procedure can be

done in 𝑂 (𝑛 +𝑚) [3]. For an uncertain graph G, we can obtain a

degeneracy ordering on the deterministic graph of G. Let 𝛿 be the

degeneracy (i.e., the maximum 𝑘-core number) of the deterministic

graph of G. When using the degeneracy ordering, the algorithm

can reduce the size of the largest candidate set from 𝑑𝑚𝑎𝑥 to 𝛿 . As

presented in [16], the degeneracy number 𝛿 is often much smaller

than the maximum degree 𝑑𝑚𝑎𝑥 (also see Table 1). Thus, such an

ordering heuristic can reduce the unnecessary computations in

enumerating all maximal (𝑘, 𝜂)-cliques.
(𝑇𝑜𝑝𝑘 , 𝜂)-core ordering. Note that the degeneracy ordering com-

pletely ignores the probabilities of edges on G. To further improve

the enumeration performance, we adopt a (𝑇𝑜𝑝𝑘 , 𝜂)-core concept

introduced by Li et al. [33] to sort the vertices in 𝑉 . Specifically,

such an ordering can be generated by iteratively peeling the vertex

with the minimum 𝜂-topdegree (detailed definition can be found in

Section 5.2) in the remaining subgraph of G. The time complexity

for computing such an ordering is 𝑂 ((𝑛 +𝑚)log𝑑𝑚𝑎𝑥 ) [33]. Based
on this ordering, it is easy to notice that the probabilities of edges in

the subgraph induced by the candidate set are relatively high. Thus,

there is a high opportunity to obtain large maximal 𝜂-cliques in the

candidate set, thus improving the effectiveness of our pivot-based

pruning techniques. Our experiments indicate that the (𝑇𝑜𝑝𝑘 , 𝜂)-
core ordering is better than the degeneracy ordering in enumerating

all maximal (𝑘, 𝜂)-cliques.

4.6 Pivot Selection Strategies
Recall that Algorithm 3 needs to select a pivot vertex𝑢 which will be

used to compute a maximum𝜂-clique containing𝑅∪{𝑢}. To achieve
better pruning performance, we need to find a good pivot vertex

based on which a large maximum 𝜂-clique can be found. Below,

we propose several heuristic pivot selection strategies which work

well in practice as confirmed in our experiments.

Maximum degree based pivot selection. Intuitively, the size of
the maximum 𝜂-clique containing 𝑅∪{𝑣} is related to the maximum

degree of 𝑣 . Therefore, a simple pivot selection strategy is to pick a

vertex 𝑣 from𝐶 with the maximum degree as the pivot, because the

algorithm is expected to obtain a large maximum 𝜂-clique with the

maximum degree vertex. We refer to such a method as a maximum

degree based pivot selection strategy.

Maximum color number based pivot selection. The size of the
maximum 𝜂-clique containing 𝑅 ∪ {𝑣} is also related to the color

number of 𝑣 inG. Here the color number is computed as follows.We

first color the graphG using a classic greedy coloring algorithm [21]

which can guarantee that two adjacent vertices are of the different

color. Then, the color number of 𝑣 is the number of different colors

that 𝑣 ’s neighbors have. Clearly, the color number of 𝑣 is an upper

bound of the size of the maximum 𝜂-clique containing 𝑅 ∪ {𝑣}, and
it is no larger than the maximum degree. Therefore, we can select

a pivot vertex from 𝐶 that has the largest color number. Intuitively,

the algorithm with such a pivot can get a large maximum 𝜂-clique.

Hybrid pivot selection strategy. Let PMUCE(𝑅,𝐶,𝑋 ) be a re-

cursive call of the pivot-based enumeration algorithm. A simple

intuition can be derived that for each vertex 𝑣 ∈ 𝐶 , the lower bound
of the size of the maximum 𝜂-clique containing 𝑣 is |𝑅 | +1. Based on
such intuition, we denote by LB(𝑣) the maximum lower bound size

of the maximal 𝜂-clique containing 𝑣 for each 𝑣 in 𝐶 . Formally, for

each vertex 𝑣 ∈ 𝐶 , LB(𝑣) = 𝑚𝑎𝑥{LB(𝑣), |𝑅 | + 1} in each recursive

call. Note that LB(𝑣) is a global concept which may be updated

across the entire recursive enumeration procedure. Clearly, a vertex

𝑣 with a large LB(𝑣) indicates that there is a large maximal 𝜂-clique

containing 𝑣 . We can use such a lower bound to obtain a hybrid

pivot selection strategy. Specifically, the hybrid strategy first selects

a pivot vertex 𝑣 with the maximum lower bound from the subset of

𝐶 that has the maximum color number. And then, it selects another

pivot vertex 𝑢 with the maximum color number from the subset

of 𝐶 that has the maximum degree. If LB(𝑣) is larger than 𝑘 , then

we select 𝑣 as a final pivot, otherwise, we pick 𝑢 as a final pivot.

Our experiments show that such a hybrid pivot selection strategy
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is better than the maximum degree and maximum color number

based strategies.

5 FURTHER OPTIMIZATION TECHNIQUES
In this section, we develop two optimization techniques to further

improve the efficiency of our enumeration algorithm. The first

technique is based on the idea of the size constraint of (𝑘, 𝜂)-clique,
which can be used to prune the search branches in the recursive

backtracking enumeration procedure. The second technique is a

graph reduction technique which can remove the vertices from G
that are definitely not included in any maximal (𝑘, 𝜂)-clique.

5.1 Pruning Branches with Size Constraint

The K-pivot technique. Note that all maximal (𝑘, 𝜂)-cliques must

contain no less than 𝑘 vertices. We can use such a size constraint

to construct a periphery set based on the result in Lemma 2. Specif-

ically, in each recursive call Recursion(𝑅,𝐶,𝑋 ), we can select a

subset of 𝐶 as a periphery set 𝑃 that satisfies |𝑅 | + |𝑃 | < 𝑘 . Note

that such a periphery set 𝑃 only relies on the size constraint with a

parameter 𝑘 , and it does not need to select a pivot vertex to con-

struct. For convenience, we refer to such a pivot technique as the

K-pivot technique, and the periphery set 𝑃 as the K-pivot set. The
following lemma formally describes the K-pivot technique.

Lemma 5. Given an uncertain graph G, all maximal (𝑘, 𝜂)-cliques
ofG can be enumerated with the periphery set 𝑃 such that |𝑅 |+|𝑃 | < 𝑘

in each recursive call Recursion(𝑅,𝐶,𝑋 ), where 𝑃 is an arbitrary
subset of the candidate set 𝐶 with size less than 𝑘 − |𝑅 |.

An improved K-pivot technique. The K-pivot technique can be

further improved using a color-based strategy. Specifically, we first

color the graph using a greedy coloring algorithm [21] such that

two adjacent vertices are of the different color. The vertices with

the same color form a color class. Instead of picking 𝑘 − |𝑅 | − 1

vertices from 𝐶 to construct a K-pivot set, the improved K-pivot
method selects 𝑘 − |𝑅 | − 1 different color classes from𝐶 . All vertices

in the selected color classes form the periphery set 𝑃 . Let 𝑐𝑙 (𝑃) be
the number of colors in 𝑃 . Then, we have the following result.

Lemma 6. Given an uncertain graph G, all maximal (𝑘, 𝜂)-cliques
of G can be enumerated with the periphery set 𝑃 ⊆ 𝐶 satisfying
𝑐𝑙 (𝑃) < 𝑘 − |𝑅 | in each recursive call.

Note that the improved K-pivot technique is clearly more effec-

tive than the K-pivot technique to reduce the search branches in the
enumeration procedure, because the set of vertices with 𝑘 − |𝑅 | − 1
colors must contain at least 𝑘 − |𝑅 | − 1 vertices. Thus, in this pa-

per, we only use the improved K-pivot technique in the proposed

enumeration algorithm.

5.2 Graph Reduction Techniques

The (𝑇𝑜𝑝𝑘 , 𝜂)-triangle based reduction technique. Here we

develop a new graph reduction technique, called (𝑇𝑜𝑝𝑘 , 𝜂)-triangle,
to dramatically reduce the size of the input graph G. This technique
is mainly based on the fact that every edge in a maximal (𝑘, 𝜂)-
clique of G is associated with at least 𝑘 − 2 triangles that have the
product of probabilities no less than 𝜂.

Let △𝑢𝑣𝑤 be a triangle with three vertices 𝑢, 𝑣,𝑤 ∈ 𝑉 , where

𝑢, 𝑣,𝑤 connect with each other in G. For an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸,

Algorithm 4: TopKTrianglePruning(G, 𝑘, 𝜂)
Input: An uncertain graph G and the parameters 𝑘 and 𝜂.

Output: The maximal (𝑇𝑜𝑝𝑘 , 𝜂 )-triangle.
1 𝑄 ← ∅;
2 foreach (𝑢, 𝑣) ∈ 𝐸 do
3 Compute 𝑡𝜂 (𝑢, 𝑣, G) ; ▷ Eq. (3)

4 if 𝑡𝑘 (𝑢, 𝑣, G) < 𝑘 then 𝑄 ← 𝑄 ∪ { (𝑢, 𝑣) } ;
5 foreach (𝑢, 𝑣) ∈ 𝑄 do
6 Remove (𝑢, 𝑣) from𝑄 and G;
7 foreach 𝑤 ∈ 𝑁𝑣 (G) ∩ 𝑁𝑢 (G) do
8 if 𝑡𝜂 (𝑤, 𝑣, G) ≥ 𝑘 then
9 Update 𝑡𝜂 (𝑤, 𝑣, G) ;

10 if 𝑡𝜂 (𝑤, 𝑣, G) < 𝑘 then 𝑄 ← 𝑄 ∪ { (𝑤, 𝑣) } ;
11 if 𝑡𝜂 (𝑤,𝑢, G) ≥ 𝑘 then
12 Update 𝑡𝜂 (𝑤,𝑢, G) ;
13 if 𝑡𝜂 (𝑤,𝑢, G) < 𝑘 then 𝑄 ← 𝑄 ∪ { (𝑤,𝑢 ) } ;

14 return the subgraph induced by remaining edges of G;

we denote by 𝐸𝑒 (G) the set of triangles in G containing edge 𝑒 ,

i.e., 𝐸𝑒 (G) = {△𝑢𝑣𝑤 | (𝑢,𝑤) ∈ 𝐸, (𝑣,𝑤) ∈ 𝐸}, where 𝑒 = (𝑢, 𝑣) ∈ 𝐸.
For an edge (𝑢, 𝑣) and a triangle △𝑢𝑣𝑤 , the open triangle probability
denoted by 𝑃𝑟𝑢𝑣 (△𝑢𝑣𝑤 ,G) is defined as the product of 𝑝 (𝑢,𝑤 ) and
𝑝 (𝑣,𝑤 ) , i.e. 𝑃𝑟𝑢𝑣 (△𝑢𝑣𝑤 ,G) = 𝑝 (𝑢,𝑤 )𝑝 (𝑣,𝑤 ) . If the context is clear,

we will omit the subscript 𝑢𝑣 in 𝑃𝑟𝑢𝑣 (△𝑢𝑣𝑤 ,G). Suppose without
loss generality that for any 𝑒 = (𝑢, 𝑣) ∈ 𝐸, the triangles in 𝐸𝑒 (G) =
{△𝑢𝑣𝑤1

, △𝑢𝑣𝑤2
, · · · , △𝑢𝑣𝑤ℎ

} are sorted in a non-increasing order

of their open triangle probabilities 𝑃𝑟𝑢𝑣 (△𝑢𝑣𝑤 ,G). The following
definition gives the top triangle degree of 𝑒 = (𝑢, 𝑣) in G.

Definition 5 (Top triangle degree). Given an uncertain graph G
and a probability threshold 𝜂 ∈ [0, 1], the top triangle degree of
𝑒 = (𝑢, 𝑣) ∈ 𝐸 in G, denoted by 𝑡𝜂 (𝑒,G), is the maximum number 𝑘
such that the product of 𝑝𝑒 and the top-𝑘 open triangle probability of
𝑒 in G is no less than 𝜂.

Denote by 𝐸𝑘𝑒 (G) the triangle set of 𝑒 ∈ 𝐸 in 𝐸𝑒 (G) with the top-

𝑘 highest open triangle probabilities. Then, the following definition

introduces a concept of top-𝑘 open triangle probability of 𝑒 in G.

Definition 6 (Top-𝑘 open triangle probability). Given an uncertain
graph G and an integer 𝑘 , the top-𝑘 open triangle probability of
𝑒 = (𝑢, 𝑣) is defined as 𝑃𝑟 (𝐸𝑘𝑒 (G)) =

∏
△𝑢𝑣𝑤 ∈𝐸𝑘𝑒 (G) 𝑃𝑟 (△𝑢𝑣𝑤 ,G).

By Definition 5 and Definition 6, for an 𝑒 ∈ 𝐸, the top triangle

degree of 𝑒 in G can be computed by

𝑡𝜂 (𝑒,G) = max{𝑘 ∈ [0, ℎ] |𝑝𝑒𝑃𝑟 (𝐸𝑘𝑒 (G)) ≥ 𝜂}, (3)

where ℎ is the cardinality of 𝐸𝑒 (G), i.e., ℎ = |𝐸𝑒 (G)|.
We can easily derive that the top triangle degree of each 𝑒 in G

follows a monotonic property.

Lemma 7. Given two subgraphs C1 and C2 of G that contain an
edge 𝑒 , we always have 𝑡𝜂 (𝑒, C1) ≤ 𝑡𝜂 (𝑒, C2) if C1 ⊆ C2.

Based on Definition 5 and Definition 6, we introduce the concept

of (𝑇𝑜𝑝𝑘 , 𝜂)-triangle as follows.

Definition 7 ((𝑇𝑜𝑝𝑘 , 𝜂)-triangle). Given an uncertain graph G, a
probability threshold 𝜂 ∈ [0, 1], and a positive integer 𝑘 ∈ N+, a

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2041



subgraph C = (𝑉C, 𝐸C, 𝑝) of G is a (𝑇𝑜𝑝𝑘 , 𝜂)-triangle if every edge
𝑒 in 𝐸C satisfies 𝑡𝜂 (𝑒, C) ≥ 𝑘 .

A (𝑇𝑜𝑝𝑘 , 𝜂)-triangle C is maximal if there is no other subgraph

C′ ⊃ C of G such that C′ is a (𝑇𝑜𝑝𝑘 , 𝜂)-triangle. The possible

triangle number of an edge 𝑒 ∈ 𝐸, called 𝑠𝜂 (𝑒), is the maximum

integer 𝑘 such that there is a (𝑇𝑜𝑝𝑘 , 𝜂)-triangle of G containing 𝑒 .

Lemma 8. Given an uncertain graph G, all maximal (𝑘 + 2, 𝜂)-
cliques of G are contained in the maximal (𝑇𝑜𝑝𝑘 , 𝜂)-triangle of G
where 𝜂 ∈ [0, 1] and 𝑘 ∈ N+.
Computing the (𝑇𝑜𝑝𝑘 , 𝜂)-triangle. Based on the monotonic prop-

erty of the top triangle degree (Lemma 7), the maximal (𝑇𝑜𝑝𝑘 , 𝜂)-
triangle can be computed by iteratively removing edges of G with

the top triangle degree less than 𝑘 . Algorithm 4 shows the detailed

procedure for computing the maximal (𝑇𝑜𝑝𝑘 , 𝜂)-triangle in G. In
particular, Algorithm 4 first computes the top triangle degree for

each edge in 𝐸 using Eq. (3) (lines 2-3). Then, the algorithm pushes

the edges whose top triangle degrees are less than 𝑘 into a queue

𝑄 (lines 2-4). Next, the algorithm iteratively removes the edges in

𝑄 (lines 5-13). When removing an edge 𝑒 , the algorithm updates

the top triangle degree for each remaining edge in G associated

with 𝑒 by a triangle (lines 9 and 12); and it pushes the edges whose

updated top triangle degrees are less than 𝑘 into 𝑄 (lines 10 and

13). Note that, in lines 9 and 12, we can update the top triangle

degree of 𝑒 ∈ 𝐸 by examining whether the removed edge is in-

cluded in 𝐸𝑘𝑒 (G) with an additional index array in constant time.

The algorithm terminates until the queue 𝑄 is empty.

Lemma 9. The time and space complexity of Algorithm 4 are
𝑂 (𝑚1.5

log(𝑑max)) and 𝑂 (𝑚1.5) respectively.
The (𝑇𝑜𝑝𝑘 , 𝜂)-core based reduction technique. In [33], Li et al.

proposed a (𝑇𝑜𝑝𝑘 , 𝜂)-core concept to prune the vertices of G with

the time complexity 𝑂 ((𝑚 + 𝑛)log(𝑑max)). Below, we first briefly
introduce the concept of (𝑇𝑜𝑝𝑘 , 𝜂)-core, since it can be used as a

preprocessing method for the proposed (𝑇𝑜𝑝𝑘 , 𝜂)-triangle based
reduction technique.

Denote by 𝐸𝑘𝑣 (G) the set of neighbors of 𝑣 with the top-𝑘 largest

edge probabilities. The 𝜂-topdegree of a vertex 𝑣 is defined as

𝜂-topdegree𝑣 (G) =𝑚𝑎𝑥{𝑘 |
∏

𝑒∈𝐸𝑘𝑣 (G)
𝑝𝑒 ≥ 𝜂}. (4)

Then, the (𝑇𝑜𝑝𝑘 , 𝜂)-core [33] is defined as follows.

Definition 8. Given an uncertain graph G, and two parameters 𝑘
and 𝜂, a subgraph C = (𝑉C, 𝐸C, 𝑝) of G is a (𝑇𝑜𝑝𝑘 , 𝜂)-core if every
vertex 𝑣 ∈ 𝑉C has a 𝜂-topdegree no less than 𝑘 in C.

Below, we show a connection between the (𝑇𝑜𝑝𝑘 , 𝜂)-core and
the proposed (𝑇𝑜𝑝𝑘 , 𝜂)-triangle.

Lemma 10. Given an uncertain graph G, any (𝑇𝑜𝑝𝑘 , 𝜂)-triangle
C of G must be a (𝑇𝑜𝑝𝑘+1, 𝜂)-core of G.

Note that the pruning technique of (𝑇𝑜𝑝𝑘 , 𝜂)-triangle is more

expensive than that of (𝑇𝑜𝑝𝑘 , 𝜂)-core. To achieve a good pruning

performance, we first apply the (𝑇𝑜𝑝𝑘 , 𝜂)-core based reduction

technique to prune vertices in G, and then we apply the proposed

(𝑇𝑜𝑝𝑘 , 𝜂)-triangle technique to further remove unpromising ver-

tices in the (𝑇𝑜𝑝𝑘 , 𝜂)-core (w.r.t. Lemma 10). Our experimental

results demonstrate that such a method is very efficient in practice.

Table 1: Datasets

Type Dataset |𝑉 | |𝐸 | 𝑑max 𝛿

Enron 87,273 1,148,072 38,785 53

Semi-real SuperUser 194,085 1,443,339 27,637 61

uncertain CaHepPh 28,093 4,596,803 11,134 410

graphs Wiki-fr 1,420,367 4,641,928 1,096,752 120

Soflow 2,601,977 63,497,050 194,806 198

Real CORE 2,708 7,123 141 15

uncertain NL27K 27,221 175,412 4157 20

graphs CN15K 15,000 241,158 1252 33

DBLP 474,131 2,715,562 279 93

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

proposed algorithms. Below, we first introduce the experimental

setup and then report our results.

6.1 Experimental Setup
We implement three algorithmsMUC, PMUC, and PMUC+ to enu-
merate all maximal (𝑘, 𝜂)-cliques. MUC is the state-of-the-art al-

gorithm proposed in [33] which invokes a (𝑇𝑜𝑝𝑘 , 𝜂)-core pruning
technique to remove unpromising vertices before the recursive

backtracking enumeration procedure. PMUC is our pivot-based

algorithm which integrates all pruning techniques developed in

Section 4. Note that PMUC is implemented based on the improved

M-pivot technique, because we find that the M-pivot method is

typically worse than the improved M-pivot technique. In addition,

we also integrate the (𝑇𝑜𝑝𝑘 , 𝜂)-core pruning technique in PMUC,
as used inMUC, for a fair comparison. PMUC+ is an improved ver-

sion of PMUC, which includes all the pruning techniques proposed

in both Section 4 and Section 5. Note that both PMUC and PMUC+
are equipped with the (𝑇𝑜𝑝𝑘 , 𝜂)-core ordering and a lower-bound

based hybrid pivot selection strategy, which typically shows a bet-

ter performance compared to the other strategies. All algorithms

are implemented in C++. All experiments are conducted on a PC

with one 2.2 GHz CPU and 128GB memory running CentOS 7.6.

Datasets. We make use of five semi-real uncertain graphs and

four real uncertain graphs to evaluate the performance of different

algorithms. Table 1 provides the detailed statistical information

of each dataset, where the last two columns show the maximum

degree and the degeneracy of each dataset respectively. Enron is

a weighted email interaction network. SuperUser, Stackoverflow
(Soflow for short), and Wiki-fr are weighted communication net-

works between online users. CaHepPh is a weighted scientific col-

laboration network.CORE is a real protein-protein interaction (PPI)
network provided by Krogan et al. [31], where the probability of

each edge represents the confidence of the interaction between

proteins. CN15K and NL27K are the real-world uncertain knowl-

edge graphs [10, 11] extracted from ConceptNet [51] and NELL [41]

respectively, where the probability of each relation fact in these

graphs represents the confidence score in the interval [0.1, 1.0].
DBLP is an uncertain graph in which the edges are inferred by the

standard LDA model [4] on DBLP collaboration network as used

in [6, 22]. The probability on each edge in DBLP represents the

likelihood between two vertices related to a specific topic task. The

first five datasets are downloaded from (http://konect.cc/), and the

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2042

http://konect.cc/


 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 6  8  10  12  14  16  18  20

T
im

e
 (

se
c
)

k

MUC
PMUC

PMUC+

(a) Enron

 0

 10

 20

 30

 40
 50

 60

 70

 80

 6  8  10  12  14  16  18  20

T
im

e
 (

se
c
)

k

MUC
PMUC

PMUC+

(b) SuperUser

10

10
2

10
3

10
4

10
5

 6  8  10  12  14  16  18  20

T
im

e
 (

se
c
)

k

MUC
PMUC

PMUC+

(c) CaHepPh

0

10K

20K

30K

40K

50K

 6  8  10  12  14  16  18  20

T
im

e
 (

se
c
)

k

MUC
PMUC

PMUC+

(d) Wiki-fr

10

10
2

10
3

10
4

INF

 6  8  10  12  14  16  18  20

T
im

e
 (

se
c
)

k

MUC
PMUC

PMUC+

(e) Soflow

 0

 50

 100

 150

 200

 250

 300

1 2 4 6 8

T
im

e
 (

se
c
)

η (×10
-2

)

MUC
PMUC

PMUC+

(f) Enron

 0

 50

 100

 150

 200

 250

 300

1 2 4 6 8

T
im

e
 (

se
c
)

η (×10
-2

)

MUC
PMUC

PMUC+

(g) SuperUser

10
2

10
3

10
4

INF

1 2 4 6 8

T
im

e
 (

se
c
)

η (×10
-2

)

MUC
PMUC

PMUC+

(h) CaHepPh

0

20K

40K

60K

INF

1 2 4 6 8

T
im

e
 (

se
c
)

η (×10
-2

)

MUC
PMUC

PMUC+

(i) Wiki-fr

10
2

10
3

10
4

INF

1 2 4 6 8

T
im

e
 (

se
c
)

η (×10
-2

)

MUC
PMUC

PMUC+

(j) Soflow

Figure 3: Runtime of different algorithms with varying 𝑘 and 𝜂
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Figure 4: Runtime of pivot-based algorithms with different
ordering techniques

remaining datasets are provided by their original authors. For the

first five datasets, we adopt a widely-used method in the uncertain

graph mining literature [33, 34, 46, 47] to generate semi-real un-

certain graphs. Specifically, for each dataset, we make use of an

exponential cumulative distribution function (𝑓 (𝑤) = 1−𝑒−𝑤/2) to
generate the probability of each edge, where𝑤 denotes the weight

of the edge. We will also study the effect of different probability

distributions in Exp-5.

Parameters. In all algorithms, there are two parameters: 𝑘 and 𝜂.

We select 𝑘 from the interval [6, 20] with a default value of 14. The

parameter 𝜂 is chosen from the interval [0.01, 0.1] with a default

value of 0.1. Unless otherwise specified, the value of the other

parameter is set to its default value when varying a parameter.

6.2 Efficiency Results
Exp-1: Runtime of different algorithms. In this experiment, we

evaluate the running time of MUC, PMUC, and PMUC+ to enu-

merate all maximal (𝑘, 𝜂)-cliques. Fig. 3 shows the runtime of each

algorithm on all semi-real datasets with varying 𝑘 and 𝜂, respec-

tively. Note that if an algorithm cannot terminate within 24 hours,

its runtime is set to "INF". As can be seen, PMUC+ consistently
outperforms PMUC andMUC under all parameter settings. More

specifically, PMUC+ can achieve 1× faster than PMUC on large

datasets with most parameter settings; and it can be up to two

orders of magnitude faster than MUC on the large datasets. For in-

stance, on Soflow (Fig. 3(e)), when 𝑘 = 20 and 𝜂 = 0.1, PMUC+ only
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Figure 5: Runtime of pivot-based algorithms with different
pivot selection strategies

takes 42.68 seconds to compute all maximal (𝑘, 𝜂)-cliques, while
PMUC and MUC take 2.74× and 117.31× more time than PMUC+,
respectively. These results demonstrate the powerful performance

of our pivot-based algorithms for enumerating all maximal (𝑘, 𝜂)-
cliques. Moreover, on the large datasets, PMUC+ (or PMUC) can
achieve a better speedup ratio w.r.t. MUC for a larger 𝑘 . This is

because the pruning performance of our pivot techniques becomes

more effective as 𝑘 grows. In addition, it is worth noting that the

runtime of PMUC and PMUC+ is very close on some datasets as

shown in Fig. 3, although PMUC is not equipped with the opti-

mization techniques developed in Section 5. These results indicate

that our improvedM-pivot technique is very effective in pruning

unnecessary vertices.

Note that all algorithms run very fast on all real datasets, so we

omit the performance results on these graphs due to the space limit.

Exp-2: Effect of different ordering techniques. In this exper-

iment, we test the efficiency of our pivot-based algorithms with

different ordering techniques proposed in section 4.5. Let PMUC-R,
PMUC-C, and PMUC+ be pivot-based algorithms based on vertices

as-is ordering, degeneracy ordering, and (𝑇𝑜𝑝𝑘 , 𝜂)-core ordering,
respectively, where the time complexities of the last two order-

ings are 𝑂 (𝑚 + 𝑛) and 𝑂 ((𝑛 +𝑚)log𝑑max), respectively. Note that
except for different ordering techniques, all these algorithms are

equipped with the same enumeration technique proposed in Sec-

tion 4 and Section 5. Fig. 4 shows the runtime of different algorithms
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Figure 6: Runtime of different graph reduction techniques
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Figure 7: The number of remaining vertices obtained by dif-
ferent graph reduction techniques

on CaHepPh and Soflow with varying 𝑘 and 𝜂, respectively. The

results on the other datasets are consistent. From Fig. 4, we observe

that the time overhead of PMUC-C and PMUC+ are consistently
lower than those of PMUC-R with different parameter settings. For

instance, on Soflow, when setting 𝑘 = 12 and 𝜂 = 0.1, PMUC-C
and PMUC+ consume 1501.79 seconds and 1324.96 seconds to com-

pute all maximal (𝑘, 𝜂)-cliques respectively while PMUC-R takes

1737.29 seconds to complete the computation. Moreover, we can

see that PMUC+ is typically faster than PMUC-C with varying 𝑘

and 𝜂, indicating that the (𝑇𝑜𝑝𝑘 , 𝜂)-core ordering is better than the

degeneracy ordering in enumerating all maximal (𝑘, 𝜂)-cliques.
Exp-3: Effect of different pivot selection strategies. In this

experiment, we evaluate the performance of three pivot selection

strategies: PMUC-D, PMUC-CD, and PMUC+, where PMUC-D is

the maximum degree based strategy, PMUC-CD is a maximum

color number based strategy, and PMUC+ is the hybrid pivot se-

lection strategy proposed in Section 4.6, respectively. Fig 5 shows

the runtime of three different algorithms on CaHepPh and Soflow.
The results on the other datasets are consistent. As can be seen,

PMUC+ achieves the best performance among these three algo-

rithms with varying 𝑘 and 𝜂, while PMUC-D exhibits the worst

performance in enumerating all maximal (𝑘, 𝜂)-cliques. A notable

example is when setting 𝑘 = 12 and 𝜂 = 0.1, PMUC+ and PMUC-
CD take 1324.96 seconds and 1579.58 seconds to enumerate all

maximal (𝑘, 𝜂)-cliques on Soflow respectively. However, PMUC-D

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 6  8  10  12  14  16  18  20

T
im

e 
(s

ec
)

k

UPM+
GPM+
NPM+

UMC
GMC
NMC

(a) CaHepPh

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 6  8  10  12  14  16  18  20

T
im

e 
(s

ec
)

k

UPM+
GPM+
NPM+

UMC
GMC
NMC

(b) Soflow

10
0

10
1

10
2

10
3

10
4

INF

1 2 4 6 8

T
im

e 
(s

ec
)

η (×10
-2

)

UPM+
GPM+
NPM+

UMC
GMC
NMC

(c) CaHepPh

10
0

10
1

10
2

10
3

10
4

INF

1 2 4 6 8

T
im

e 
(s

ec
)

η (×10
-2

)

UPM+
GPM+
NPM+

UMC
GMC
NMC

(d) Soflow

Figure 8: Efficiency of various algorithms on uncertain
graphs with different probability distributions
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Figure 9: Scalability of different algorithms on Soflow (𝑘 = 10

and 𝜂 = 0.1)

0

10

100

1K

10K

100K

Enron
SuperUser

CaHepPh
Wiki-fr

Soflow

M
em

or
y 

(M
)

Graph Size
MUC

PMUC
PMUC+

Figure 10: Memory usages of different algorithms

consumes 4074.9 seconds to complete the computations. These re-

sults suggest that the proposed hybrid pivot selection strategy is

indeed very efficient in enumerating all maximal (𝑘, 𝜂)-cliques.
Exp-4: Comparison of graph reduction techniques. Denote
by TopTriangle the (𝑇𝑜𝑝𝑘 , 𝜂)-triangle graph reduction technique

proposed in Section 5.2, and TopCore be the (𝑇𝑜𝑝𝑘 , 𝜂)-core graph
reduction technique proposed in [33]. Fig. 6 shows the runtime of

TopTriangle and TopCore on CaHepPh and Soflow; and Fig. 7 re-

ports the number of remaining vertices obtained by these two graph

reduction techniques on CaHepPh and Soflow. Similar results can

be observed on the other datasets.

From Fig. 6, we can see that the time overhead of TopCore is
very stable with varying 𝑘 and 𝜂 on different datasets. The run-

time of TopTriangle, however, increases as 𝑘 and 𝜂 decrease. The

reasons are as follows. The runtime of TopCore is dominated by

the initialization phase for computing the 𝜂-topdegrees of all ver-

tices which is insensitive w.r.t. 𝑘 and 𝜂. TopTriangle works on the

(𝑇𝑜𝑝𝑘 , 𝜂)-core subgraph, whose size increases as 𝑘 decreases (or

𝜂). Thus, the time overhead of TopTriangle increases as 𝑘 and 𝜂

decrease. However, when comparing the total time overhead for

enumerating all maximal (𝑘, 𝜂)-cliques using different graph reduc-

tion techniques (see Exp-1), we can observe that the pivot-based

algorithm equipped with TopTriangle is much faster than that of

the algorithm with TopCore.
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Table 2: Precision of various algorithms on CORE.

Algorithm #Results TP FP PR

USCAN [47] 456 1086 2037 0.348

PCluser [30] 475 1027 3021 0.266

UKCore [6] 3 418 151 0.318

UKTruss [22] 3 266 134 0.374

PMUCE 1505 61971 16355 0.791

Fig. 7 shows the graph reduction performance of TopCore and
TopTriangle. As can be seen, TopTriangle consistently outperforms

TopCore for pruning vertices ofG with varying𝑘 and𝜂, because the

structure of (𝑇𝑜𝑝𝑘 , 𝜂)-triangle is more cohesive than (𝑇𝑜𝑝𝑘 , 𝜂)-core
(Lemma 10). This result confirms that our TopTriangle technique
can achieve better pruning performance than TopCore technique.

Exp-5: The effect of different probability distributions. Here
we evaluate the performance of different algorithms on semi-real

uncertain graphs generated from uniform, geometry, and normal

distributions, where the probability of each edge is generated by

uniformly selecting a value from [0.5,1], by a function 𝑓 (𝑤) =∑𝑤
𝑖=1 (1−𝑝)

𝑤𝑝 with 𝑝 = 0.2, and by 𝑓 (𝑤) = 1

2
(1+ 𝑒𝑟 𝑓 ( 𝑤−𝜇𝜎 )) with

𝜇 = 5 and 𝜎 = 8, respectively. The results are shown in Fig. 8. Note

that in Fig. 8,𝑈𝑀𝐶 ,𝐺𝑀𝐶 , and 𝑁𝑀𝐶 denoteMUCE on the datasets

with edge probabilities generated by uniform, geometry, or normal

distributions, respectively. Similarly, 𝑈𝑃𝑀+, 𝐺𝑃𝑀+, and 𝑁𝑃𝑀+
represent PMUC+ on uncertain graphs with edge probabilities gen-

erated by uniform, geometry, or normal probability distributions,

respectively. As can be seen, the time overheads of PMUC+ are
consistently lower than that ofMUCE on all uncertain graphs with

different probability distributions. Moreover, PMUC+ is one order
of magnitude faster than MUCE within most parameter settings.

These results are consistent with our previous results, which fur-

ther suggest that the performance of our algorithm is insensitive

to different types of uncertain graphs.

Exp-6: Scalability testing. In this experiment, we make use of the

largest dataset Soflow to test the scalability of the proposed pivot-

based algorithms. In particular, we generate four subgraphs by

randomly sampling 20-80% vertices (edges) from Soflow; and evalu-
ate the runtime of each algorithm on these subgraphs. Fig. 9 shows

the scalability results of PMUC+, PMUC, andMUC on Soflowwith

𝑘 = 10 and 𝜂 = 0.1. We can see that the time overheads of all al-

gorithms increase smoothly with the increase of |𝑉 | and |𝐸 |. Once
again, we can observe that the runtime of our pivot-based algo-

rithms (PMUC+ and PMUC) are significantly lower than those of

the state-of-the-art algorithm (MUC). These results indicate that
our algorithms exhibit better scalability performance than MUC in

enumerating all maximal (𝑘, 𝜂)-cliques.
Exp-7: Memory overhead. Fig. 10 shows the memory overheads

of PMUC+, PMUC, and MUC. From Fig. 10, we can see that the

memory usages of all algorithms are slightly larger than the graph

size (most of them are twice the graph size). Moreover, even for

PMUC+, which uses the (𝑇𝑜𝑝𝑘 , 𝜂)-triangle graph reduction tech-

nique, it has roughly the same memory usage as PMUC. This is
because the (𝑇𝑜𝑝𝑘 , 𝜂)-triangle graph reduction technique is com-

puted in the subgraph induced by (𝑇𝑜𝑝𝑘 , 𝜂)-core, which is often

much smaller than the original graph. These results indicate that

the proposed pivot-based algorithms are highly space-efficient.
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Figure 11: Community search results on real-world uncertain
knowledge graphs.

6.3 Case Studies

Exp-8: Clustering quality on PPI networks. Here we evaluate
the clustering quality of maximal (𝑘, 𝜂)-cliques on protein-protein

interaction (PPI) network CORE. According to [47], the ground

truth results of protein interactions can be determined by the MIPS

protein database [30]. Then, we can evaluate the clustering quality

of various algorithms by computing the number of true positive

protein interactions (TP), the number of false positive protein in-

teractions (FP), and the precision result (PR=TP/(FP+TP)) obtained

by the algorithms. We make use of four state-of-the-art algorithms,

USCAN [47], PCluser [30], UKCore [6], and UKTruss [22], as base-
lines to compare the effectiveness with our algorithm. For USCAN
and PCluser, we run them with the default parameter settings as

used in their experiments. For the other algorithms, we set 𝜂 = 0.1,

and then make use of PMUCE, UKCore, and UKTruss to enumer-

ate all maximal (10, 0.1)-cliques, (9, 0.1)-cores, and local (10, 0.1)-
trusses, respectively. Table 2 shows the results of various algorithms.

As can be seen, PMUCE achieves the best clustering quality among

all algorithms. In particular, the precisions of all baselines are lower

than 0.375, while PMUCE can achieve a precision of 0.791. The

reason for this is that proteins usually interact strongly in a small

area which cannot be well characterized by the graph clustering

methods (USCAN [47] and PCluser [30]), and by 𝑘-core (UKCore)
or 𝑘-truss (UKTruss) based cohesive subgraph models, because all

of them often obtain relatively large clusters. These results indicate

that our algorithms are very effective in applications of detecting

protein complexes in PPI networks.

Exp-9: Community search on uncertain knowledge graphs.
We evaluate the community search performance of our algorithm

on two real-world uncertain knowledge graphs CN15K and NL27K
[10, 11]. For comparison, we apply UKCore and UKTruss to detect

communities, as these two algorithms are the state-of-the-art for

community search applications on uncertain graphs [6, 22]. Fig. 11

shows the community search results of different algorithms on

CN15K and NL27K. In particular, Fig. 11(a-b) are the results on

CN15K with 𝜂 = 0.001 and a query 𝑄 = {“plant”}; Fig. 11(c-d) are
the results on NL27K with 𝜂 = 0.1 and a query 𝑄 = {“mlb”}. Note
that the communities obtained by UKCore on these two uncertain
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Table 3: Task-driven team formation queries and results.

𝑄 = {“Jiawei Han”}
𝑇 = {“Databases”} 𝑇 = {“Information Networks”}

Qiming Chen, Jiawei Han,
Jianyong Wang, Meichun Hsu,

Jian Pei, Umeshwar Dayal,

Behzad Mortazavi-Asl

Heng Ji, Jiawei Han,
Yizhou Sun, Chi Wang,

Jialu Liu, Xiang Ren,

Brandon Norick

graphs are very large, thuswe did not visualize them. OnCN15K, we
can see that the community obtained by UKTruss has 200 vertices
and 1541 edges with a diameter of 7. A large number of words in this

community are not related to the word “plant”, which is clearly not

what we expected. While in Fig. 11(b), the community obtained by

our algorithm is the plant-based foods, which is more likely to be a

community. In addition, on NL27K, we can see that the community

found by UKTruss not only contains the Major League Baseball

(MLB) sports teams but also the National Football League (NFL)

sports teams, while the result obtained by our solution only contains

the MLB sports teams. These results demonstrate the superiority

of our algorithm in community search on uncertain graphs.

Exp-10: Task-driven team formation. In this experiment, we

apply our maximal (𝑘, 𝜂)-clique algorithm to solve the task-driven

team formation problem on DBLP [6, 22]. Let G𝑇 be the uncertain

graph obtained by the specific topic task 𝑇 [6]. Given a query pair

⟨𝑇,𝑄⟩ with a task𝑇 and a vertex set𝑄 ⊂ 𝑉 , and a probability thresh-

old 𝜂, the problem of task-driven team formation is to find a good

team𝐴 from G𝑇 , with𝑄 ⊂ 𝐴, which maximizes a notion of density.

For comparison, we also useUKCore andUKTruss as baselines; and
set the parameter 𝜂 = 10

−10
(as the probabilities of the edges in

DBLP are small). We take two queries ⟨“Databases”, “Jiawei Han”⟩
and ⟨“Information Networks”, “Jiawei Han”⟩ as examples. For the

first query,UKCore obtains a team that has 13,473 nodes and 120,049

edges, and UKTruss gets a team with 10,546 nodes and 74,875 edges.

Since the results are too large, we do not visualize the teams founded

by these methods. Compared to UKCore and UKTruss, which often

contain many irrelevant vertices in the team, our solution can ob-

tain a more compact team which only contains 7 vertices (highly

relevant to the query) as shown in Table 3. The results for the sec-

ond query are consistent. Moreover, we can see that the obtained

teams by our solution are quite different when we use the same

query vertex “Jiawei Han” to detect teams with respect to two topic

tasks (Table 3). This result indicates that our algorithm performs

well in the application of task-driven team formation.

7 RELATEDWORKS

Maximal clique enumeration. Our work is closely related to the

traditional maximal clique enumeration problem on deterministic

graphs. The well-known solutions for enumerating all maximal

cliques are the classic BK algorithm [7] and its pivot-based variants

[17, 44, 52]. Tomita et al. [52] shown that the time overhead to list

all maximal cliques is optimal in the worst case using their pivot

technique. Eppstein et al. [17] further derived a tighter worst-case

time complexity for enumerating all maximal cliques based on a

degeneracy ordering technique [35]. Naudé et al. [44] revised the

pivot algorithm by refined the pivot selection process to speedup

the computations. Additionally, a class of output-sensitive algo-

rithms has also been developed for the problem of maximal clique

enumeration [9, 13, 37], which are bounded with a time delay be-

tween reported cliques. Although those output-sensitive algorithms

are theoretically efficient, their practical performance is often worse

than the pivot-based algorithms as reported in [13]. More recently,

the maximal clique enumeration problem was also studied on some

particular types of graphs. For example, Viard et al. [54] studied the

problem of enumerating all maximal cliques in temporal graphs. Li

et al. [32] developed an efficient algorithm to enumerate all maximal

signed cliques. Chen et al. [12] further studied the problem of enu-

merating all balanced cliques in signed graphs. Unfortunately, all

aforementioned techniques cannot be used to enumerate maximal

(𝑘, 𝜂)-cliques on uncertain graphs.

Uncertain graphmining.Mining uncertain graphs is a fundamen-

tal research topic in graph analysis. Except for maximal (𝑘, 𝜂)-clique
enumeration, there are many uncertain graph mining tasks that are

related to our work. Notable examples for uncertain graph mining

include identifying reliable connected subgraphs [26, 27], comput-

ing shortest paths or nearest neighbors [18, 46, 49], performing

influence analysis [39], and detecting cohesive subgraphs in uncer-

tain graphs [6, 22, 47, 55]. More specifically, Khan et al. [27] studied

the problem of detecting reliable vertices in uncertain graphs. Ke

et al. [26] provided guidelines for researches and applications on

the problem of 𝑠-𝑡 reliability estimation by extensive experimen-

tal evaluations. Saha et al. [49] studied the problem of computing

shortest paths in uncertain networks. Potamias et al. [46] and Gao

et al. [18] investigated the problem of 𝑘-nearest neighbors over

uncertain graphs. Mehmood et al. [39] studied an influence cascade

problem to find a set of vertices with the minimum excepted Jaccard

distance from a source 𝑠 . In addition, many graph clustering models

on uncertain graphs have also been proposed. For example, Bonchi

et al. [6] and Yang et al. [55] investigated a 𝑘-core concept on un-

certain graphs. Huang et al. [22] studied the problem of computing

truss decomposition on uncertain graphs. Qiu et al. [47] developed

a graph structural clustering technique on uncertain graphs.

8 CONCLUSION
In this paper, we study the problem of enumerating all maximal

(𝑘, 𝜂)-cliques on an uncertain graph. We show that the state-of-

the-art enumeration algorithms include many unnecessary com-

putations, thus resulting in poor practical performance. To reduce

such unnecessary computations, we first develop a novel and gen-

eral pivot principle for the problem of enumerating all maximal

P-subgraphs that satisfy a hereditary property. Based on this prin-

ciple, we propose two new pivot techniques which are tailored

for maximal (𝑘, 𝜂)-clique enumeration. We also propose a size-

constraint based pruning technique and a new graph reduction

technique to further improve the efficiency of the enumeration

algorithm. We conduct extensive experiments on nine real-world

graphs to evaluate the proposed algorithms. The results show that

our best algorithm can be up to two orders of magnitude faster than

the state-of-the-art algorithm.
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